3 research outputs found

    Modelling and control of chaotic processes through their Bifurcation Diagrams generated with the help of Recurrent Neural Network models: Part 1—simulation studies

    Get PDF
    Many real-world processes tend to be chaotic and also do not lead to satisfactory analytical modelling. It has been shown here that for such chaotic processes represented through short chaotic noisy time-series, a multi-input and multi-output recurrent neural networks model can be built which is capable of capturing the process trends and predicting the future values from any given starting condition. It is further shown that this capability can be achieved by the Recurrent Neural Network model when it is trained to very low value of mean squared error. Such a model can then be used for constructing the Bifurcation Diagram of the process leading to determination of desirable operating conditions. Further, this multi-input and multi-output model makes the process accessible for control using open-loop/closed-loop approaches or bifurcation control etc. All these studies have been carried out using a low dimensional discrete chaotic system of Hénon Map as a representative of some real-world processes

    Modelling of Metallurgical Processes Using Chaos Theory and Hybrid Computational Intelligence

    Get PDF
    The main objective of the present work is to develop a framework for modelling and controlling of a real world multi-input and multi-output (MIMO) continuously drifting metallurgical process, which is shown to be a complex system. A small change in the properties of the charge composition may lead to entirely different outcome of the process. The newly emerging paradigm of soft-computing or Hybrid Computational Intelligence Systems approach which is based on neural networks, fuzzy sets, genetic algorithms and chaos theory has been applied to tackle this problem In this framework first a feed-forward neuro-model has been developed based on the data collected from a working Submerged Arc Furnace (SAF). Then the process is analysed for the existence of the chaos with the chaos theory (calculating indices like embedding dimension, Lyapunov exponent etc). After that an effort is made to evolve a fuzzy logic controller for the dynamical process using combination of genetic algorithms and the neural networks based forward model to predict the system’s behaviour or conditions in advance and to further suggest modifications to be made to achieve the desired results

    Hypertension and Diabetes Situation in the Eastern Mediterranean Region: With Special Reference to Iran

    No full text
    corecore